Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

New modes for subsurface atomic force microscopy through nanomechanical coupling.

Identifieur interne : 003184 ( Main/Exploration ); précédent : 003183; suivant : 003185

New modes for subsurface atomic force microscopy through nanomechanical coupling.

Auteurs : L. Tetard [États-Unis] ; A. Passian ; T. Thundat

Source :

RBID : pubmed:20023642

Descripteurs français

English descriptors

Abstract

Non-destructive, nanoscale characterization techniques are needed to understand both synthetic and biological materials. The atomic force microscope uses a force-sensing cantilever with a sharp tip to measure the topography and other properties of surfaces. As the tip is scanned over the surface it experiences attractive and repulsive forces that depend on the chemical and mechanical properties of the sample. Here we show that an atomic force microscope can obtain a range of surface and subsurface information by making use of the nonlinear nanomechanical coupling between the probe and the sample. This technique, which is called mode-synthesizing atomic force microscopy, relies on multi-harmonic forcing of the sample and the probe. A rich spectrum of first- and higher-order couplings is discovered, providing a multitude of new operational modes for force microscopy, and the capabilities of the technique are demonstrated by examining nanofabricated samples and plant cells.

DOI: 10.1038/nnano.2009.454
PubMed: 20023642


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">New modes for subsurface atomic force microscopy through nanomechanical coupling.</title>
<author>
<name sortKey="Tetard, L" sort="Tetard, L" uniqKey="Tetard L" first="L" last="Tetard">L. Tetard</name>
<affiliation wicri:level="1">
<nlm:affiliation>Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6123, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6123</wicri:regionArea>
<wicri:noRegion>Tennessee 37831-6123</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Passian, A" sort="Passian, A" uniqKey="Passian A" first="A" last="Passian">A. Passian</name>
</author>
<author>
<name sortKey="Thundat, T" sort="Thundat, T" uniqKey="Thundat T" first="T" last="Thundat">T. Thundat</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20023642</idno>
<idno type="pmid">20023642</idno>
<idno type="doi">10.1038/nnano.2009.454</idno>
<idno type="wicri:Area/Main/Corpus">003352</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003352</idno>
<idno type="wicri:Area/Main/Curation">003352</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003352</idno>
<idno type="wicri:Area/Main/Exploration">003352</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">New modes for subsurface atomic force microscopy through nanomechanical coupling.</title>
<author>
<name sortKey="Tetard, L" sort="Tetard, L" uniqKey="Tetard L" first="L" last="Tetard">L. Tetard</name>
<affiliation wicri:level="1">
<nlm:affiliation>Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6123, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6123</wicri:regionArea>
<wicri:noRegion>Tennessee 37831-6123</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Passian, A" sort="Passian, A" uniqKey="Passian A" first="A" last="Passian">A. Passian</name>
</author>
<author>
<name sortKey="Thundat, T" sort="Thundat, T" uniqKey="Thundat T" first="T" last="Thundat">T. Thundat</name>
</author>
</analytic>
<series>
<title level="j">Nature nanotechnology</title>
<idno type="eISSN">1748-3395</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Equipment Design (MeSH)</term>
<term>Microscopy, Atomic Force (instrumentation)</term>
<term>Microscopy, Atomic Force (methods)</term>
<term>Nanostructures (chemistry)</term>
<term>Nanostructures (ultrastructure)</term>
<term>Nanotechnology (instrumentation)</term>
<term>Nanotechnology (methods)</term>
<term>Populus (ultrastructure)</term>
<term>Stress, Mechanical (MeSH)</term>
<term>Wood (ultrastructure)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Bois (ultrastructure)</term>
<term>Conception d'appareillage (MeSH)</term>
<term>Contrainte mécanique (MeSH)</term>
<term>Microscopie à force atomique (instrumentation)</term>
<term>Microscopie à force atomique (méthodes)</term>
<term>Nanostructures (composition chimique)</term>
<term>Nanostructures (ultrastructure)</term>
<term>Nanotechnologie (instrumentation)</term>
<term>Nanotechnologie (méthodes)</term>
<term>Populus (ultrastructure)</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Nanostructures</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Nanostructures</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Microscopy, Atomic Force</term>
<term>Nanotechnology</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Microscopy, Atomic Force</term>
<term>Nanotechnology</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Microscopie à force atomique</term>
<term>Nanotechnologie</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Nanostructures</term>
<term>Populus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Equipment Design</term>
<term>Stress, Mechanical</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="fr">
<term>Bois</term>
<term>Conception d'appareillage</term>
<term>Contrainte mécanique</term>
<term>Microscopie à force atomique</term>
<term>Nanostructures</term>
<term>Nanotechnologie</term>
<term>Populus</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Non-destructive, nanoscale characterization techniques are needed to understand both synthetic and biological materials. The atomic force microscope uses a force-sensing cantilever with a sharp tip to measure the topography and other properties of surfaces. As the tip is scanned over the surface it experiences attractive and repulsive forces that depend on the chemical and mechanical properties of the sample. Here we show that an atomic force microscope can obtain a range of surface and subsurface information by making use of the nonlinear nanomechanical coupling between the probe and the sample. This technique, which is called mode-synthesizing atomic force microscopy, relies on multi-harmonic forcing of the sample and the probe. A rich spectrum of first- and higher-order couplings is discovered, providing a multitude of new operational modes for force microscopy, and the capabilities of the technique are demonstrated by examining nanofabricated samples and plant cells.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20023642</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>04</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1748-3395</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>5</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2010</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Nature nanotechnology</Title>
<ISOAbbreviation>Nat Nanotechnol</ISOAbbreviation>
</Journal>
<ArticleTitle>New modes for subsurface atomic force microscopy through nanomechanical coupling.</ArticleTitle>
<Pagination>
<MedlinePgn>105-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/nnano.2009.454</ELocationID>
<Abstract>
<AbstractText>Non-destructive, nanoscale characterization techniques are needed to understand both synthetic and biological materials. The atomic force microscope uses a force-sensing cantilever with a sharp tip to measure the topography and other properties of surfaces. As the tip is scanned over the surface it experiences attractive and repulsive forces that depend on the chemical and mechanical properties of the sample. Here we show that an atomic force microscope can obtain a range of surface and subsurface information by making use of the nonlinear nanomechanical coupling between the probe and the sample. This technique, which is called mode-synthesizing atomic force microscopy, relies on multi-harmonic forcing of the sample and the probe. A rich spectrum of first- and higher-order couplings is discovered, providing a multitude of new operational modes for force microscopy, and the capabilities of the technique are demonstrated by examining nanofabricated samples and plant cells.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tetard</LastName>
<ForeName>L</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6123, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Passian</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Thundat</LastName>
<ForeName>T</ForeName>
<Initials>T</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>12</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nat Nanotechnol</MedlineTA>
<NlmUniqueID>101283273</NlmUniqueID>
<ISSNLinking>1748-3387</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D004867" MajorTopicYN="N">Equipment Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018625" MajorTopicYN="N">Microscopy, Atomic Force</DescriptorName>
<QualifierName UI="Q000295" MajorTopicYN="Y">instrumentation</QualifierName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049329" MajorTopicYN="N">Nanostructures</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="Y">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036103" MajorTopicYN="N">Nanotechnology</DescriptorName>
<QualifierName UI="Q000295" MajorTopicYN="Y">instrumentation</QualifierName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013314" MajorTopicYN="N">Stress, Mechanical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>04</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>11</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>12</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>12</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>4</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20023642</ArticleId>
<ArticleId IdType="pii">nnano.2009.454</ArticleId>
<ArticleId IdType="doi">10.1038/nnano.2009.454</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Nanotechnol. 2008 Aug;3(8):501-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18685639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2008 Dec 1;101(5):913-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18781690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2005 Nov;6(11):850-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16261190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Mater. 2007 Jun;6(6):405-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17541439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2008 Feb;26(2):169-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18259168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Nanotechnol. 2007 Aug;2(8):507-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18654349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Oct 7;310(5745):89-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16210534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev Lett. 2008 Feb 22;100(7):076102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18352572</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Passian, A" sort="Passian, A" uniqKey="Passian A" first="A" last="Passian">A. Passian</name>
<name sortKey="Thundat, T" sort="Thundat, T" uniqKey="Thundat T" first="T" last="Thundat">T. Thundat</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Tetard, L" sort="Tetard, L" uniqKey="Tetard L" first="L" last="Tetard">L. Tetard</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003184 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003184 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20023642
   |texte=   New modes for subsurface atomic force microscopy through nanomechanical coupling.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20023642" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020